Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Lithium niobate is a promising material for developing quantum acoustic technologies due to its strong piezoelectric effect and availability in the form of crystalline thin films of high quality. However, at radio frequencies and cryogenic temperatures, these resonators are limited by the presence of decoherence and dephasing due to two-level systems. To mitigate these losses and increase device performance, a more detailed picture of the microscopic nature of these loss channels is needed. In this study, we fabricate several lithium niobate acoustic wave resonators and apply different processing steps that modify their surfaces. These treatments include argon ion sputtering, annealing, and acid cleans. We characterize the effects of these treatments using three surface-sensitive measurements: cryogenic microwave spectroscopy measuring density and coupling of TLS to mechanics, X-ray photoelectron spectroscopy and atomic force microscopy. We learn from these studies that, surprisingly, increases of TLS density may accompany apparent improvements in the surface quality as probed by the latter two approaches. Our work outlines the importance that surfaces and fabrication techniques play in altering acoustic resonator coherence, and suggests gaps in our understanding as well as approaches to address them.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Photonic integrated circuits with second-order (χ(2)) nonlinearities are rapidly scaling to remarkably low powers. At this time, state-of-the-art devices achieve saturated nonlinear interactions with thousands of photons when driven by continuous-wave lasers, and further reductions in these energy requirements enabled by the use of ultrafast pulses may soon push nonlinear optics into the realm of single-photon nonlinearities. This tutorial reviews these recent developments in ultrafast nonlinear photonics, discusses design strategies for realizing few-photon nonlinear interactions, and presents a unified treatment of ultrafast quantum nonlinear optics using a framework that smoothly interpolates from classical behaviors to the few-photon scale. These emerging platforms for quantum optics fundamentally differ from typical realizations in cavity quantum electrodynamics due to the large number of coupled optical modes. Classically, multimode behaviors have been well studied in nonlinear optics, with famous examples including soliton formation and supercontinuum generation. In contrast, multimode quantum systems exhibit a far greater variety of behaviors, and yet closed-form solutions are even sparser than their classical counterparts. In developing a framework for ultrafast quantum optics, we identify what behaviors carry over from classical to quantum devices, what intuition must be abandoned, and what new opportunities exist at the intersection of ultrafast and quantum nonlinear optics. Although this article focuses on establishing connections between the classical and quantum behaviors of devices withχ(2)nonlinearities, the frameworks developed here are general and are readily extended to the description of dynamical processes based on third-orderχ(3)nonlinearities.more » « less
-
Abstract Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order optical nonlinearity, but an analogous integrated platform for second-order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-degenerate operation of the parametric oscillator at room temperature and tune its emission over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we observe cascaded second-order processes that result in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.more » « less
-
Abstract Tuning and reconfiguring of nanophotonic components are needed to realize systems incorporating many components. The electrostatic force can deform a structure and tune its optical response. Despite the success of electrostatic actuators, they suffer from trade-offs between tuning voltage, tuning range, and on-chip area. Piezoelectric actuation could resolve these challenges, but only pm-per-volt scale wavelength tunability has been achieved. Here we propose and demonstrate compact piezoelectric actuators, called nanobenders, that transduce tens of nanometers per volt. By leveraging the non-uniform electric field from submicron electrodes, we generate bending of a piezoelectric nanobeam. Combined with a sliced photonic crystal cavity to sense displacement, we show tuning of an optical resonance by ~ 5 nm V−1 (0.6 THz V−1) and between 1520 ~ 1560 nm (~ 400 linewidths) within 4 V. Finally, we consider tunable nanophotonic components enabled by the nanobenders.more » « less
An official website of the United States government
